МЕЖПОЗВОНОЧНЫЕ ДИСКИ
Межпозвоночные диски составляют одну треть длины позвоночника. Они выполняют амортизирующую функцию и воспринимают на себя всю нагрузку. Одновременно обеспечивают его гибкость и эластичность структуры в целом. Поэтому механические свойства именно межпозвоночных дисков в большей степени, чем всё остальное, определяют двигательную активность всего позвоночника. Большая часть болей в спине обусловлена заболеваниями самих межпозвоночных дисков таких как остеохондроз, грыжа диска (пролабирование, протрузия, экструзия), либо повреждением других структур, вызванное изменением в строении и нарушением функций диска («высыхание» и снижение высоты). В этом разделе представлена информация о структуре, строении и составе межпозвоночных дисков, их видоизменении при различных процессах и заболеваниях.
Немного интересной анатомии.
Между позвонками человека находятся 24 межпозвоночных диска. Нет дисков только между затылочной костью и первым позвонком, первым и вторым шейным позвонком и в крестцовом, копчиковом отделах позвоночника. Диски вместе с телами позвонков образуют позвоночный столб. Размер дисков разный, увеличивается сверху вниз и зависит от выполняемой нагрузки. В поясничном отделе диск достигает 45 мм в переднезаднем направлении, 64 мм в медиально-латеральном направлении и 11 мм в толщину.
Диск состоит из хрящевой ткани и анатомически делится на три составляющих.. Внутренняя часть – пульпозное ядро. Представляет собой гелеобразную массу, богатую водой и особенно хорошо выражен у молодых людей. Наружный участок - фиброзное кольцо - имеет твердую и волокнистую структуру. Волокна переплетены между собой в разных направлениях, что позволяет диску выдерживать многократные высокие нагрузки при сгибании и скручивании. Третья составляющая диска - тонкий слой гиалинового хряща, который отделяет диск от тела позвонка. У взрослых людей ткани диска питаются за счет сосудов тела позвонка. И "замыкательная" пластинка из гиалинового хряща играет важную роль в этом процессе питания.
С возрастом ядро диска теряет воду, становится тверже. Замыкательная пластинка постепенно склерозируется и уплотняется. Различие между ядром и фиброзным кольцом становится не столь четким. Это отчётливо видно на магнито-резонансной томограмме.
Более светлым выглядит ядро диска, ещё не потерявшее воду, а более тёмный диск на томограмме - из за отсутствия воды в ядре. Наличие воды в ядре обеспечивается особым его составом. Биохимия диска очень сложная и важна для понимания принципов возможного восстановления этой структуры.
Биохимический состав
Межпозвоночный диск, как и другие хрящи, состоит в основном из воды и коллагеновых волокон, погруженных в матрикс из протеогликанового геля. Эти компоненты составляют 90-95% общей массы ткани, хотя их соотношение может колебаться в зависимости от конкретного участка диска, возраста человека и наличия дегенеративных процессов.
В матриксе также находятся клетки, осуществляющие синтез компонентов диска. В межпозвоночном диске по сравнению с другими тканями клеток очень мало. Но, несмотря на малое количество, эти клетки очень важны для поддержания функций диска, так как они в течение всей жизни синтезируют жизненно-необходимые макромолекулы для восполнения их естественной убыли.
Вот строение клетки.
Основной протеогликан диска - аггрекан - представляет собой крупную молекулу, состоящую из центрального белкового ядра и связанных с ним многочисленных групп гликозаминогликанов – сложной структуры цепочек дисахаридов. Эти цепочки несут большое количество отрицательных зарядов, благодаря чему притягивают молекулы воды (диск её удерживает, являясь гидрофильным как поваренная соль). Эта характеристика называется давлением набухания, и важна для функционирования диска.
Вся эта сложная схема сводится к тому, что преславутая гиалуроновая кислота связывает молекулы протеогликанов, образуя крупные агрегаты (накапливающие воду). Вот почему гиалуроновой кислоте уделяется такое большое внимание и в медицине и в косметологии. В диске и гиалиновой пластинке обнаружены и другие, более мелкие типы протеогликанов, в частности, декорин, бигликан, фибромодулин и люмикан. Они так же учавствуют в регуляции коллагеновой сети.
Вода является основным компонентом диска, составляющим от 65 до 90% его объема, в зависимости от конкретной части диска и возраста человека. Существует чёткая корреляция между содержанием в матриксе воды и протеогликанов. Кроме того, содержание воды зависит от нагрузки на диск. А нагрузка может быть разной в зависимости от положения тела в пространстве. Давление в диски колеблется, в зависимости от положения тела, от 2.0 ло 5.0 атмосфер, а при наклонах и поднятии тяжести давление на диски увеличивается порой до 10.0 атмосфер. В нормальном состоянии давление в диске создается в основном водой в ядре и удерживается внутренней частью наружного кольца. При увеличении нагрузки на диск давление равномерно распределяется по всему диску и может иметь повреждающий характер.Проиллюстрирую.
Поскольку ночью нагрузка на позвоночник меньше, чем днем, содержание воды в диске изменяется в течение суток. Вода очень важна для осуществления механической функции диска,. А так же важна в качестве среды для перемещения растворимых веществ в матриксе диска.
Коллаген является основным структурным белком тела человека и представляет собой группу по крайней мере из 17 индивидуальных белков. Все коллагеновые белки имеют спиральные участки и стабилизированы несколькими внутренними межмолекулярными связями, которые позволяют молекуле выдерживать высокую механическую нагрузку и химическое ферментативное расщепление. В межпозвоночном диске присутствуют несколько типов коллагена. Причем наружное кольцо состоит из коллагена I типа, а ядро и хрящевая пластинка - из коллагена II типа. Оба типа коллагена образуют волокна, формирующие структурную основу диска. Волокна ядра значительно тоньше, чем волокна наружного кольца.
При осевом сдавливании диска он деформируется и уплощается. Под воздействием внешней нагрузки вода из диска уходит. Это простая физика. По этому, мы в конце рабочего дня меньше ростом, чем утром после отдыха. Во время дневной физической активности, когда давление на диск повышено, диск теряет 10-25% своей воды. Эта вода восстанавливается ночью, в покое, во время сна . Из-за потери воды и сжатия диска человек за день может терять до 3-х см своего роста. При сгибании и разгибании позвоночника диск может менять свой вертикальный размер на 30-60%, а расстояние между отростками соседних позвонков может увеличиваться более, чем в 4 раза. Если нагрузка исчезает в течение нескольких секунд, то диск быстро возвращается к исходным размерам. Однако если нагрузка сохраняется, то вода и дальше уходит и диск продолжает сжиматься. Этот перегрузочный момент часто становится стимулом расслоения фиброзного кольца диска. Состав диска меняется с возрастом при развитии дегенерации перегрузок. Статистика – упрямая вещь. К 30-и годам в ядре диска теряется 30% протеогликанов (гликозаминогликанов), которые должны «тянуть» на себя воду, обеспечивая давление (тургор) в диске. Поэтому закономерны дегенеративные процессы и старение структур. Ядро - теряет воду, а протеогликаны - уже не могут столь же эффективно реагировать на нагрузку.
Уменьшение высоты диска влияет на другие структуры позвоночника, например на мышцы и связки. Это может привести к увеличению давления на суставные отростки позвонков, что является причиной их дегенерации и провоцирует развитие артроза в межпозвоночных суставах.
Связь биохимической структуры и функции межпозвоночного диска
Протеогликаны
Чем больше в диске гликозаминогликанов, тем больше сродство ядра к воде. Соотношение их количества, давления воды в диске и нагрузки на него определяет количество воды, которое может принять диск.
При увеличении нагрузки на диск повышается давление воды, и равновесие нарушается. Для восстановления равновесия часть воды выходит из диска, в результате чего концентрация гликозаминогликанов увеличивается. И как результат – повышается осмотическое давление в диске. Выход воды продолжается до восстановления равновесия или до устранения нагрузки на диск.
Выход воды из диска зависит не только от нагрузки на него. Чем моложе организм, тем больше концентрация протеогликанов в ткани кольца диска. Их волокна тоньше и расстояние между их цепочками – меньше. Через такое мелкое сито жидкость течет очень медленно, и даже при большой разнице давления в диске и за его пределами - скорость выхода жидкости очень мала, а следовательно мала и скорость сжатия диска. Однако в дегенеративном диске концентрация протеогликанов снижена, плотность волокон меньше и жидкость протекает через волокна быстрее. Это объясняет, почему повреждённые дегенеративные диски сжимаются быстрее, чем нормальные.
Вода имеет огромное значение в функциональности диска.
Она является основным компонентом межпозвоночного диска, и его «жесткость» обеспечивается гидрофильными свойствами гликозаминогликанов. При небольшой потере воды - коллагеновая сеть расслабляется, и диск становится более мягким и податливым. При потере большей части воды механические свойства диска кардинально меняются, и при нагрузке его ткань ведет себя как твердое вещество. Вода также является средой, через которую пассивно осуществляется питание диска и отводятся продукты метаболизма. Несмотря на всю плотность и стабильность структуры диска "водная" часть в нём меняется весьма интенсивно. Один раз в 10 минут - у человека 25-летнего возраста. С течением лет этот показатель естественно снижается по понятным причинам.
Сеть коллагена выполняет армирующую роль и удерживает гликозаминогликаны в диске. А те в свою очередь - воду. Эти три компонента вместе образуют структуру, способную выдерживать сильное сдавливание.
«Мудрая» организация коллагеновых волокон обеспечивает удивительную гибкость диска. Волокна расположены слоями. Направление волокон, идущих к телам соседних позвонков, чередуется по слоям. В результате этого образуется переплетение, позволяющее позвоночнику значительно сгибаться, несмотря на то, что сами коллагеновые волокна могут растянуться лишь на 3 %.
Питание диска и процессы обмена
Клетки диска синтезируют как его высокоорганизованные компоненты, так и расщепляющие их ферменты. Это саморегулирующаяся система. В здоровом диске скорость синтеза и расщепления компонентов сбалансированы. За это ответственна высокоорганизованная клетка, о которой писалось выше. При нарушении этого баланса состав диска резко изменяется. В период роста анаболические процессы синтеза и замены молекул преобладают над катаболическими процессами их расщепления. При регулярной нагрузке происходит изнашивание и старение диска. Наблюдается обратная картина. Срок жизни гикозаминогликанов обычно составляет около 2 лет, а коллагена - значительно дольше. При нарушении баланса синтеза и расщепления составляющих диска, содержание гликозаминогликанов в матриксе снижается, и механические свойства диска значительно ухудшаются.
На метаболизм диска сильно влияет механическая нагрузка. В настоящее время можно сказать, что тяжёлая и регулярная физическая работа приводит к быстрому старению и изнашиванию диска, согласно механизмам, описанным выше. Нагрузка, поддерживающая стабильный баланс и нормальное питание диска описана в разделе рекомендации и советы врача. Вкратце могу сказать, что амплитудные и активные движения при уже «больном» диске – приведут к ускорению дегенеративных процессов в нём. И, соответственно, прогрессированию симптомов болезни.
Биофизика доставки питательных веществ
Диск получает питательные вещества из кровеносных сосудов прилежащих тел позвонков. Кислород и глюкоза должны проникнуть путем диффузии через хрящевую ткань диска к клеткам, находящимся в центре диска. Расстояние от центра диска, где расположены клетки, до ближайшего кровеносного сосуда примерно 7-8 мм. В процессе диффузии образуется градиент концентрации питательных веществ. На границе между диском и телом позвонка находится замыкательная (гиалиновая) пластинка. Концентрация кислорода в этой области диска в норме должна составлять примерно 50% от его концентрации в крови. А в центре диска эта концентрация обычно не превышает 1%. Поэтому метаболизм диска идет в основном по анаэробному пути. По пути образования кислоты. При концентрации кислорода на «границе» меньше 5% в диске усиливается образование продукта метаболизма – лактата – той самой «кислоты». и концентрация лактата в центре диска может быть в 6-8 раз выше, чем в крови или межклеточной среде, что оказывает токсическое действие на ткань диска и она разрушается.
Основная причина дегенерации диска - нарушение доставки питательных веществ. С возрастом снижается проницаемость краевой пластинки диска, и это может затруднять проникновение в диск питательных веществ с водой и выведение из диска продуктов распада, в частности, лактата. При снижении проницаемости диска для питательных веществ концентрация кислорода в центре диска может упасть до очень низкого уровня. При этом активируется анаэробный метаболизм и усиливается образование кислоты, выведение которой затруднено. В результате увеличивается кислотность в центре диска (рН снижается до 6,4). В сочетании с низким парциальным давлением кислорода в диске, повышенная кислотность приводит к снижению скорости синтеза гликозаминогликанов и уменьшает сродство к воде. Таким образом «порочный круг» замыкается. Кислород и вода в диск не идут – нет гликозаминогликанов в ядре! А прийти они могут только пассивно - с водой. Кроме того, сами клетки плохо переносят длительное пребывание в кислой среде, и в диске обнаруживается большой процент мертвых клеток.
Возможно, некоторые из этих изменений могут быть обратимы. Диск обладает некоторой способностью к регенерации.